Lecture 2
$|||||||\mid$
et
\square
 （ 2
\square别
\square P． （2）
\qquad
\square \square

CATCH UP:

SciViz and DataViZ
VS (contained in)
InfoViz

SCIVIS or DATAVIS:

visualize empirical/ scientific data, or real data to be seen (observed, analized, unserstood, perceived)
o presents results, tells a data story
o allows exploring data,
o Understand the data (making hypothesis, verifying hypothesis, dempnstrating them, thus demonstrating a thesis)
o uses well known techniques: tabs, graphs, maps, plots, ...
o Must choose

- Best = most representative/ well represented data
- Proper (already existing) visualization method
o Allows to
- show results and tell stories, by reporting key findings
- make comparisons
- present a timeline story
- advertisement
- give instructions, explain processes
- call to action
- simplify complex data, resume a complex story
o It builds/ discovers/ finds out the best visualization methods making up novel ones
o Jointly exploits art and scivis methods

INTERACTIVE and DYNAMIC
or

STATIC?

VISUALIZATION (both InfoViz and SciViz): INTERACTIVE OR STATIC?

A static visualization depicts a data story, a result that you want to explain to others.

The result does not change in time.

WHAT YOUR COFFEE SAYS ABOUT YOU

ESPRESSO
Youre friendly and
adaptive. You atcully
liae the taste of cofte.
a rare, but admimiable trait.

TRIPLE ESPRESSO
Youre enthusiastic but
obsesise Youve been
awese ince the e tee
obsessive. Youve been
awake since the late 90 's.

double espresso
Youre practical and hari
working. ou like knowin
What one shot working. You like know
that one shot just doess
do it for you anymore.

MOCHA
Youre fun-loving and creative.
You hate the ta you hate the taste of coftee
but rouneed the pick-me-up. so you improvise.
LATTE
You're refiect ve, but
often indecisive. In a
often indecisive In a
like the sate pich

CAPPUCCINO
Youre warm-hearted but
oblivious at times. Your
friends have to remind you to wipe the foam off your ips


```
MACCHIATO
Youre traditional
Youre traaritional and
reserved, but for the
most paat vou hate most part, you hate
foam mustaches.
```


ICED COFFEE
Youre assertive and outspoken You dont let seasons dictate
how you live your life. Also, you like straws.

FRAPPUCCINO
Youre happy and energetic.
You clim to love cofffe, but really, you just love ice cream
and

COFFEE To-co
Youre serious and focused You beilive when the going cardboard sleeves bec
the cups too hot
the cups too hot

Expresso
Youire clever, annoying, or both You knowingly or tiknowingly
mispronounce eSpresso. Either mispronounce es
way, I hate you.

An interactive graphic tells a different story each time new data is automatically or manually inserted. It is dynamic (automatic dynamic update o manual update)

Most often used by visual analytics and business intelligence tools

INTERACTIVE https://www.nasdaq.com/

STATIC https:// www.nasdaq.com/ articles/ when-performance-matters\%3A-nasdaq-100-vs. -sp-500-2019-07-22

The S\&P 500, or just the S\&P, is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States. It is one of the most commonly followed equity indices, and many consider it to be one of the best representations of the U.S. stock market

Interaction techniques

are particularly useful for allowing dynamic exploration of large scale datasets, eventually showing interaction between points in the dataset.

- overview+detail [1] techniques provide users with a coarse overview of the dataset structure and allow detailed views of portions of the dataset on demand. Do not distort data but allowing zooming back and forth.
- Focus+context [2] techniques aim at integrating both, detailed views (focus) and overview (context). Examples: fish-eyes views, distorted views (logarithmic views)
[1] B. Shneiderman, "The eyes have it: a task by data type taxonomy for information visualizations," Proceedings 1996 IEEE Symposium on Visual Languages, Boulder, CO, USA, 1996, pp. 336-343. doi: 10.1109/ VL. 1996.545307. URL:
http:/ / ieeexplore. ieee.org/ stamp/ stamp.jsp?tp=\&arnumber=545307\&isnumber=11360.
[2] Y. K. Leung and M. D. Apperley. 1994. A review and taxonomy of distortion-oriented presentation techniques. ACM Trans. Comput.-Hum. Interact. 1, 2 (J une 1994), 126-160. DOI:https:// doi.org/ 10.1145/ 180171.180173

Design and evaluation

Some works concentrate on the design and evaluation of interactive visualization tools. Both design and evaluation must comprise:

Task abstraction studies: the task must be viewed at a higher, abstract level.

Human Computer interaction (HCl) studies: focus on the user needs, to design proper computerized systems by particularly focusing in the interaction between humans (the users) and computers.

User-centered design (UCD) studies: interactive design process in which designers focus on the users and their needs in each phase of the design process.

When the dynamic process regards environmental data, maps are used.

One of the mostly viewed interactive dashboards in February/ March 2020:
https:// experience. arcgis.com/ experience/ 685d0ace521648f8a5beeeee1b9125cd

WHERE DID GRAPHS/ TABLES/ PLOTS COME FROM?

A Brief History of Data Visualization
Michael Friendly

1786. William Playfair "Commercial and political Atlas"

Exports and Imports to and from DENMARK \&e NORWAY from 1700 to 1780 .

The Bottom line is divided into Years, the Right hand line into L10,000 each.

THE FIRST BAR CHART (it's horizontal: Playfair already knew and considered psychological principles)

Exports and Imports of SCOTLAND to and from different parts for one Year from Chriftmas 17^{80} to Chriftmas 17^{61}

The Upright divifions are Ten Thoufand Pounds each. The Black Lines are Exports the Ribbedlines Imports.

PLAYFAIR ALSO INTRODUCED THE USAGE OF SUPERIMPOSED GRAPHS (TWO AXIS)

Playfair used three parallel time series to show the price of wheat, weekly wages,
and reigning monarch (top line)
over a 250 year span from 1565 to 1820, and used this graph to argue that workers had become better off in the most recent years.

Pie chart from Playfair's Statistical Breviary (1801), showing the proportions of the Turkish Empire located in Asia, Europe and Africa before 1789

Re-drawn version of a portion of Playfair's 1801 pie-circle-line chart

Use of two separate vertical scales for different quantities (population and taxes).
Tries to directly compare population and taxes and argue that the British were overtaxed, compared with others.

In this figure the left axis and line on each circle/ pie graph shows population, while the right axis and line shows taxes.

Playfair intended that the slope of the line connecting the two would depict the rate of taxation directly to the eye;

WRONG! The slope also depends on the diameters of the circles (geographical area which has been considered).

However the direction of the slope is right in telling which country is more taxed. Britain is in opposite direction with respect to other countries

1826. Baron Pierre Charles Dupin

Choropleth map with shadings from black to white (distribution and intensity of illiteracy in France), the first (unclassed) choropleth map, and perhaps the first modern statistical map.

Represents in 2D six types of data:

- the number of Napoleon's troops;
- distance;
- temperature;
- the latitude and longitude;
- direction of travel;
- and location relative to specific dates.

a MCobilow a-om-rejoin- wers Orocha en Witelsk, avaiem-torjouro marchic avec l'azmée.

J ohn Snow and the cholera in London (1854)

J ohn Snow and the cholera in London (1854)

The enemy was a public water pump in Broad Street.

1856. Rose diagram of Florence Nightingale

famous for her contributions to medicine, her rose diagram describes causes of deaths in soldiers during the Napoleonic wars and enabled improving sanitation for soldiers on the battlefield

2.

APRIL 1855 то MARCH 1856

DLAERAM or qhe CAUSRS of MORTAGIPY
in the ARMy in the EAST.

APRIL 1854 то MARCH 1855.

The Areas of the blue, red, \& black wedges are each measured from the centre as the common vertex.
The blue wedges measured from the centre of the circle represent area for area the deaths from Preoentible or Mitigable Zymotuc diseases; the red wedges measured from the centre the deaths from wounds; \& the black wedges measured from the centre the deaths from all other causes. The black line across the red triangle in Nov.' 1854 marks the boundary of the deathe from all other causes during the month
In October 1854, \& April 1855, the black area corincides woth the red, in January \& February 1855, the blue coincides with the black:
The entire areas may be compared by following the blue, the red $\&$ the black lines enclosing them?
1886. Galton's correlation diagram (parents' height and Adult children's height)

And from the beginning of the past century (1900) many graphs/ plots/ charts have been created

1933. Henry C. Beck

And we arrive to modern times:
A visual history of human knowledge (Manuel Lima)
TED'STALKS

Graphs visualization generally represents interactions between entities, as a network:
A Survey on Graph Visualization
Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges
A Survey on Information Visualization for Network and Service Management

UNIPred-Web: a web tool for theintegration and visualization of biomolecularnetworks for protein function prediction

CerebroVis: Designing an Abstract yet Spatially Contextualized Cerebral Artery Network Visualization

Treemaps by BenShneiderman for visualizing graphs and multiresolution data:

I have been doing a social network analysis of the purchase patterns of political books since 2003. Unsurprisingly, from my very first mapping I saw two distinct political clusters: a red one designating those who read right-leaning books and a blue one designating those who read left-leaning books. In my 2003 network analysis, I saw just one book holding the red and blue clusters together. Ironically, that book was named What Went Wrong. This map is shown in Figure 7-10.
"Beautiful Visualizations"

Network visualizations allow understanding social phenomena

"...Figure 2-7 shows a network visualization of my Facebook friends and how many of them have "friended" one another." Beautiful Visualizations

Figure 2-7. Nexus rendering of a network visualization of my Facebook friends

Figure 6-1. Flight Patterns, a visualization of aircraft location data for airplanes arriving at and departing from U.S. and Canadian airports
"[...] Flight Patterns is a project I started in 2005 that visualizes civilian air traffic in the United States and Canada. It [...] traces aircraft arriving and departing from U.S. and Canadian airports over a 24 -hour period. [...]"

Beautiful visualizations
 the data: flight paths going in every direction

Figure 6-3. Another closeup that reflects what I found to be common instead: clear, bright lines Figure 6-3. Another closeup that reflects what found to be common
that indicate flight paths followed closely by high volumes of planes

- Vision of flight patterns (concentration of aerial paths).
- Perception of the wide number of flights passing over our heads.

Uses colors for showing quantities.
Using colors for describing quantities is fine if user do not need an exact perception of quantities
(color perception is not international, areas are international)

Visualizations have been realized by implementing with Processing

http:// www. stefanieposavec.com/ writing-without-words

1xi=1	1×2.2	1×3:3	2×4*4	1×5=5
2x1=2	$2 \times 2=4$	$2 \times 3=6$	$2 \times 4=8$	$2 \times 5=10$
3×1-3	$3 \times 2=6$	3*3 2	$3 \times 4=12$	3:15
$4 \times 1=4$	$4 \times 2=8$	4×3:	$4 \times 4=16$	5220
5x1=5	$5 \times 2=10$	$5 \times 3=15$	5×4.20	5×0.28
6×106	6×2	6x3: 18	6x+224	6x5:30
7×1=7	$7 \times 2=14$	$7 \times 3 \pm 21$	7×4128	7×5:35
$8 \times 1=8$	$8 \times 2=16$	24	8x+423	8×5.40
9xi=9	$9 \times 2=18$	$9 \times 3=27$	9×4.36	9×5.45
- Product				10

Set of Simple Multiplication Tables. 123rf.com

8
8
9
10

Definition of Multiplication Tables mathsisfun.com

 National Drug Policies . apps.who.int

Curve numbers calculations and from. researchgate.net

hidden beauty of multiplication tab... plus.maths.org

Whole Number Table

$\begin{array}{lllllllll}50 & 51 & 52 & 51 & 54 & 55 & 50 & 57 & 58 \\ 50 & 59 & 39\end{array}$
$\begin{array}{llllllllll}60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 \\ 70 & 71 & 72 & 73 & 74 & 75 & 76 & 7 & 78 & 79\end{array}$

The Whole Number Table - MA... math-inic.com

Table of Random Numbers
mathbitsnotebook.com

cartoon numbers stock Photo alamy.com

AppleScript and Numbers: Sorting Tables iworkautomation.com

Set of Simple Multiplication Tables On 123rf.com

\square

What do we use to plot them and see them?

Suppose that for each of the 50 states of the U.S.A. we need to study cancer rates.

Here are the data ($\underline{\operatorname{csv}, \underline{x \mid s X})}$ for years 2005, 2014-2018

SILLY TABLE DESIGN BRINGS NO UNDERTSANDING

 OR SILLY UNDERSTANDINGTables are generally used for looking up specific numbers, BUT:

They should be well organized
They should be placed in the right place
They should be well designed
The should contain the right data

Product	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
Product01	93,993	84,773	88,833	95,838	93,874	83,994	84,759	92,738	93,728	93,972	93,772	$99,837-1$
Product02	87,413	78,839	82,615	89,129	87,303	78,114	78,826	86,246	87,167	87,394	87,208	92,848
Product03	90,036	81,204	85,093	91,803	89,922	80,458	81,191	88,834	89,782	90,016	89,824	95,634
Product04	92,737	83,640	87,646	94,557	92,620	82,872	83,626	91,499	92,476	92,716	92,519	98,503
Product05	86,245	77,785	81,511	87,938	86,136	77,071	77,773	85,094	86,002	86,226	88,043	91,608
Product06	88,833	80,119	83,956	90,576	88,720	79,383	80,106	87,647	88,582	88,813	88,624	94,356
Product07	82,614	74,511	78,079	84,236	82,510	73,826	74,498	81,511	82,382	82,596	82,420	87,751
Product08	85,093	76,746	80,421	86,763	84,985	76,041	76,733	83,957	84,853	85,074	84,893	90,384
Product109	87,646	79,048	82,834	89,366	87,535	78,322	79,035	86,475	87,399	87,626	87,440	93,095
Product 10	90,275	81,420	85,319	92,047	90,161	80,672	81,406	89,070	90,021	90,255	90,063	95,888

Product	Jan	Fab	Mar	Apr	May	Jun
Product01	93,993	84,773	88,833	95,838	99,874	83,994
Product02	87,413	78,839	82,615	89,129	87,303	78,114
Product 03	90,036	81,204	85,093	91,803	89,922	80,458
Product 04	92,737	83,640	87,646	94,557	92,620	82,872
Product05	83,733	75,520	79,137	85,377	83,627	74,826
Total	447,913	403,976	423,323	456,705	447,346	400,284

Why not using colorbars??
Esempio

Let's using colorbars in the csv

Anyhow,

How could we create good tables?
When could we use them?
The Gestalt principles and data/ ink ratio will help us!

Otherwise, we could use maps, e.g. interactive maps:
https:// www.cdc. gov/ nchs/ pressroom/ sosmap/ cancer_mortality/ cancer.htm

Here is a (per country) solution: same periods but different types of cancers

Maps of age adjusted cancer rates for the 3056 countries in the USA. The size and shape of each country might be described by at least four values..

THIS MAP VISUALIZES:

 In highest decile, statistically significantSignificantly high, but Significantly high, but
not in highest decile In highest decile, but not statistically significant Not significantly differen from U.S. as a whole Significantly lower than U.S. as a whole

$3056 *(1+4)$ values

- High low rates
- Hot spots
- Women / men difference in rates
- Type of tumour

Looking at data we may capture risk zones and men/ wemen risks
E. g. we could start planning ad hoc screens in different areas or try to understand in there are particular reasons for cancers being concentrated in certain areas.

RECALL THAT SILLY DATA BRING TO SILLY VISUALIZATIONS!

Data must be well done

- Data should not be biased (Plotted data are diagnosis data. What if there are errors in diagnosis?)
- Moreover, cancer rate must be age-adjusted, sex-adjusted,....

Maps of age adf USted cancer rates for the 3056 countries in the USA.

Example with AGE-ADJ USTED

Study the rate of an event in the population of geographic area G

INPUT:
H: age ranges
$H=\{h 1, h 2, h 3, \ldots h 20\}=\{1-4,5-9,10-14, \ldots, 75-79,80-84, \ldots, 95-99\}$

Age Standardization of Death Rates:
Implementation of the Year 2000 Standard

If N is the number of age ranges

Estimate the number of event for each age range
E = [e(h1), ..., e(hN)]
$e(h i)=$ \# of events in persons living in geographic area G with age hi

Estimate the number of persons in G for each age.
$N=[n(h 1), \ldots, n(h N)]$
$n(h i)=\#$ of persons in G with age hi

1) FOR EACH AGE RANGE compute the age-specific rate (ASR) per h

ASR(h) answers to the question: if all the persons with age in range h in G were 100,000 which rate would I have measured?

The rate in the area of study (e.g., county, state) for age group h is computed by:
dividing the number of events in people with age h by the number of people with age in h (in geographical area G) and then multiplying by a constant of 100,000

This results in an age-specific event rate (ASR) per 100,000 population for the age group h :

$$
\operatorname{ASR}(h)=\frac{\text { events in age group }}{\text { estimated population of that age group }} \times 100,000=\frac{e(h)}{n(h)} \times 100,000
$$

Each ASR is normalized by multiplying it by the proportion of the standard population of that same age group (see Tables)
$\operatorname{ASR}_{\text {Norm }}(\mathrm{h})=\operatorname{ASR}(\mathrm{h}) \times$ standard proportion(h)

The age-specific results are summed to get the age-adjusted death rate for the area of study.

$$
\begin{array}{rl}
\mathrm{AAR}=\sum_{\text {for each age group } h} & \mathrm{ASR}(\mathrm{~h}) x \text { standard proportion(h) } \\
= & \sum_{h \in H} A S R_{\text {Norm }}(h)
\end{array}
$$

This is called the direct method of standardization.

$\begin{gathered} \text { M } \\ \underset{\sim}{\circ} \end{gathered}$	Age Group (years)	Standard Population
¢	0,0	1000
	1-4	4000
$\frac{0}{7}$	5-9	5500
\bigcirc	10-14	5500
0	15-19	5500
\bigcirc	20-24	6000
0	25-29	6000
ত	30-34	6500
\cdots	35-39	7000
$\frac{\square}{0}$	40-44	7000
\bigcirc	45-49	7000
O	50-54	7000
Ш	55-59	6500
¢	60-64	6000
,	65-69	5500
0	70-74	5000
$\bar{\square}$	75-79	4000
\cdots	80-84	2500
0	85-89	1500
	90-94	800
	95+	200
	Total	100000

Age	$\begin{gathered} 1940 \\ \text { Proportio } \\ \mathrm{n} \end{gathered}$	$\begin{gathered} 1970 \\ \text { Proportio } \\ \mathrm{n} \end{gathered}$	$\begin{aligned} & 2000 \\ & \text { Proportio } \\ & \text { n } \end{aligned}$
Under 1 year	0.015343	0.017151	0.013818
1-4 years	0.064718	0.067265	0.055317
$\begin{aligned} & 5-14 \\ & \text { years } \end{aligned}$	0.170355	0.200506	0.145565
$15-24$ \|years	0.181677	0.174406	0.138646
$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	0.162066	0.122569	0.135573
$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	0.139237	0.113614	0.162613
$45-54$ years	0.117811	0.114265	0.134834
55-64 years	0.080294	0.091480	0.087247
65-74 years	0.048426	0.061195	0.066037
75-84 years	0.017303	0.030112	0.044842
85 and over	0.002770	0.007435	0.015508
All ages	1.000000	1.000000	1.000000

> Vision trumps all other senses. We learn and remember best through pictures, not through written or spoken words.
> -John Medina, Brain Rules
70% of sensory receptor are for viewing

Therefore vision captures the $\mathbf{7 0 \%}$ of the stimuli humans receive from the external world

Stephen Few, «Show me the Numbers», pag 61 http:// www. percezionevisiva. com/ anatomia-occhio/

Most of our cognition then happens thanks to vision!

Sensation-Perception-Cognition

«La caratteristica distintiva dei cervelli come il nostro è la prodigiosa capacità di creare mappe»

Antonio Damaso, Self Comes to Mind: Constructing the conscious brain

Suppose you are sitting in the park... Reading a book...

Relaxed and concentrated in your reading

Something inside us saw the ball withouth us being conscious.

Our mind (our thinking ego) was slow; we recognize that a ball hit us, only when the ball has already hit us and is on the floor

Therefore:

- Vision and Perception are fast, the mind is slow
- The brain is cartographer (IF it sees the ball, it knows where it is and how long it will approximately take before hitting us).
- Though connected, VISION, PERCEPTION, AND COGNITION are different phenomena
- we see and perceive before having any cognition

HOW ARE VISION / PERCEPTION / MIND INTERACTING AND

COMMUNICATING TO LET US FORM OUR COGNITION?

Tra tutte le onde elettromagnetiche la luce solare

Radiations from light (fotoni) hit the object that absorbs some of them and reflects the others

\qquad

We see only a small portion of the light radiation (visible light)

- blu-violet radiations (400-490 nm);
- greed radiations (490-560 nm);
- yellow radiations (560-590 nm);
- red-orange radiations (590-700 nm).

 functions like the camera objective

Cornea: protective lens

macular ||l|

Fixation Point

To view details we close the lens to let less light enter into the eye.
Light concentrates into the fovea.
In this way we are able to see 625 points in 1 square inch (2.54 square cm).
[Edward Tufte (2001). The visual display of quantitative Information]

```
25 points in \(1^{\prime \prime}\)
25 points in \(1^{\prime \prime}\)
```

Griglia $n \times n=25 \times 25$ in $1^{\prime \prime}$

25 black squares and $26=$ white squares for each line

How many details can I see?

Therefore

$(n+1)^{2}$	crosses
$2 n(n+1)$	lines

Ovvero vedo:

$$
3 n^{2}+6 n+1 \quad \text { details }
$$

which is

$$
3 * 25^{2}+6 * 25+1=\text { dettagli }
$$

2050 details

This is all seen through stimuli going through macula in the left and right eye

Mind that we have two eyes: fovea (right eye) + fovea (left eye)
The combination of such stimuli produces:

- Horizontal, peripheral view
- 3D view

2 eyes: 3D view

3/23/2020

The blind spot

SACCADIC movements: eye move with a frequency of 2-3 movements per second Fixations: when eyes stop on the scene

An experiment:
Movement of the eyes

3/23/2020

Spots with Pols:

- contain lots of details (high frequency points)
- lot of text in the document creates low frequencies. Eyes don't stop
- In the desert, a unique advertisement would make your eyes stop on it
- where details are clearer
- differing fonts for text have different effects
- contain uncommon shapes, or moving (living) shapes
- contain bright/ saturated colors

Ma se i punti di interesse sono

VISION IS NOT PERCEPTION

BUT

PERCEIVING ALLOWS SEEING

But often vision and brain work together to cheat us

E ora?

Our brain recalls from memory that, when a 3D object is illuminated, it is shaded.

When the brain does not identify the source of light, it thinks thank it comes from the outside, from the sky, from the top of the paper (slide)
[In the past light came from the sun. That's why we think it come from the top. In the future experience may change.]

\qquad
$+$

 nnen
．

\square

\qquad

$+$

都
\qquad

 （
－

Impossible fork

3/23/2020

000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 mm

Peripheral drift illusion:

motion illusion in images with asymmetric static patterns.

Two theories. It is due to:

1) Fast saccadic movements due to the high level of details

Distorsions: Squares are squares?

- - - - - - - - - -

Why you
shouldn't use 3D

$\|\|\|$

\qquad

 .
\square

$+$

Neural inibition
(on/ off cells)

Mach Bands...
Mind bar chart put together

There's light blue
circle (with blue
stripes)?
Is it true?
Is there a circle?
(7) UNiversità degli studi di milano

